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Abstract

In this paper we present a new server monitoring method
based on a new and powerful approach to dynamic data
analysis: Process Query Systems (PQS). PQS enables user-
space monitoring of servers and, by using advanced behav-
ioral models, makes accurate and fast decisions regarding
server and service state. Data to support state estimation
come from multiple sensor feeds located within a server
network. By post-processing a system’s state estimates, it
becomes possible to identify, isolate and/or restart anoma-
lous systems, thus avoiding cross-infection or prolonging
performance degradation. The PQS system we use is a
generic process detection software platform. It builds on
the wide variety of system-level information that past au-
tonomic computing research has studied by implementing a
highly flexible, scalable and efficient process-based analytic
engine for turning raw system information into actionable
system and service state estimates.

1 Introduction

Proper security and performance monitoring of modern
server farms is a difficult task. While most commercial
monitoring solutions do scale to the capacities required for
capturing large amounts of status data being generated by
high-throughput server banks, they are weak on the ana-
lytic capabilities required to interpret or otherwise use that
data in such a way as to implement autonomic behaviors.
For example, intrusion detection software often generates
hundreds of alerts per minute, most of which are false-
positives, subsequently desensitizing administrators to any
actual serious threat. Additionally, it is not uncommon for
most servers to share identical software, making the entire
server bank vulnerable to the same set of attacks. When one
server is compromised but not quarantined immediately, the

attack may spread to the entire server array. The results can
be catastrophic; unplanned downtime can cost as much as
$550,000 per hour in lost revenue for large server farms,
such as those used in the financial services industry [12].

Autonomic computing approaches to server manage-
ment strive to identify deviant behavior by services running
on the servers as a means of mitigating this problem. By
having each server closely monitor all of its processes and
system variables, it is possible to identify rogue or anoma-
lous behavior when it occurs. Once identified, the process
can then be quarantined, shut down, and possibly restarted.
One major problem with modern autonomic monitoring ap-
proaches, however, is the way in which they monitor pro-
cesses. They either use a limited number of status indica-
tors or are invasive with respect to the operating system or
application software. Some experimental systems, for in-
stance, hook into the OS kernel and monitor all the system
calls coming from a monitored process [7]. When combined
with dynamic behavior learning algorithms, such methods
can impose an unacceptable load on system resources.

In this paper we present a significantly more scalable ap-
proach to monitoring system processes. Process Query Sys-
tem (PQS) [4] technology allows us to quickly and easily
integrate multiple sensor sources and model human system
administrator analysis in order to obtain fast and accurate
results, with a significantly reduced overhead as compared
with other approaches. Human system administrators often
only monitor a small portion of the available system data,
such as server load, network load, I/O load, and intrusion
detection data. By combining this information, a human
analyst may decide to further investigate the behavior of
any one server. Process Query Systems is a technology that
allows quick and easy integration of sensor resources and
uses custom built models to detect evidence of occurring
processes in the observed environment. Because of its level
of abstraction, the programmer can focus on these process
models instead of system design or sensor input. By cor-



relating externalized host state with network-level context,
PQS models can provide administrators with a clearer pic-
ture of network state and facilitate self-healing actions.

Our system combines user-space process monitoring,
such as system load, I/O load, and fork behavior with in-
trusion detection data and loads it into the PQS processing
core. We will show how our process models can signifi-
cantly reduce false positive rate of the connected IDS sys-
tems, and how deviant process behavior can be easily de-
tected, and qualified without a significant increase in server
system load.

The next section contains a short introduction to the con-
cepts behind Process Query Systems. Section 3 describes
the server monitoring architecture we have implemented us-
ing PQS, including the sensor types and process models.
Experimental results using a testbed server network are in
Section 4 while Section 5 is an analysis of our findings with
suggestions for future work.

2 Background

In this section we take an in-depth look at the new Pro-
cess Query System (PQS) technology, as well as the current
state-of-the-art in server monitoring systems. The particu-
lar implementation of a PQS that we used for this work was
called “TRAFEN”, the TRacking And Fusion ENgine [1].

2.1 Process Query Systems

Process Query Systems are a new paradigm in which
user queries are expressed as process descriptions. This
allows a PQS to solve large and complex information re-
trieval problems in dynamic, continually changing environ-
ments where sensor input is often unreliable. The sys-
tem can take input from arbitrary sensors and then form
hypotheses regarding the observed environment, based on
the process queries given by the user. Figure 1 shows a
simple example of such a model. Model M1 represents
a state machine S1 = (Q1,Σ1,δ1), where the set of states
Q1 = {A,B,C}, the set of observable events Σ1 = {a,b,c},
and the set of possible associations δ1 : Q1 ×Σ1 consists of
δ1 = {{A,a},{B,a},{B,b},{C,c}}. Notice how this pro-
cess is able to produce observed event a in both state A and
state B. A possible event sequence recognized by this model
would be:

e1 = a,e2 = a,e3 = b,e4 = c,e5 = b

which we will write as e1:5 = aabcb for convenience. Pos-
sible state sequences that match this sequence of observed
events could be AABCB, or ABBCB, both of which are
equally likely given M1. A rule-based model would require
many rules to identify this process, based on all the possible
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event sequences. Below is a set of all the rules necessary for
detecting single transitions:

AA → {aa}
AB → {aa},{ab}
BB → {aa},{ab},{ba},{bb}
BA → {aa},{ba}
BC → {ac},{bc}
CC → {cc}
CB → {ca},{cb}
CA → {ca}

Needless to say the list of possible event sequences for dou-
ble transitions is massive (e.g. transitions AAA, AAB, ABB,
ABC, . . . etc.) and only grows when we consider dealing
with the possibility of missed observations. Rules would
then have to include sequences that have two transitions for
a single observed event, albeit with a lower priority account-
ing for the fact that we expect only few observations to go
missing.

We now introduce a second model M2, shown in Fig-
ure 2, defined by state machine S2 = (Q2,Σ2,δ2). Consider
that both processes are regularly and concurrently occur-
ring in the observed environment. Note that the process
states are labeled differently, i.e. Q1 ∩ Q2 = /0, although
both processes produce the same set of observable events,
i.e. Σ1 ∩ Σ2 ≡ Σ1 ≡ Σ2. Now consider the following se-
quence of events:



e1:24 = abaacabbacabacccabacabbc

where each observation may have been produced by in-
stances of model M1, model M2, or be totally unrelated.
It must be noted that any modeled process may very well
be occurring multiple times concurrently. A Process Query
System uses multiple hypothesis, multiple model tech-
niques to disambiguate observed events and associate them
with a “best fit” description of which processes are occur-
ring and what state they are in. By comparison, a rule-based
system would become extremely complex for the above
situation and quickly become unmaintainable and unintel-
ligible. Additional problems with rule-based approaches
arise when probabilities are assigned to the state transitions,
and/or the event productions, as in Hidden Markov Models
for example.

Consider the following example. Assume that the first
model describes the dynamics of a propeller plane, and the
second model describes the dynamics of a fighter jet, both
observed by radar. It may very well be possible that there
are several propeller planes and a group of jet fighters in the
same airspace, all within radar range. The PQS will use the
radar data as input observations together with the two mod-
els to disambiguate which radar observations were triggered
by which aircraft by associating radar observations using
the models. Subsequently, the hypothesis will be that there
are several instances of the model M1 (the propeller plane)
and a group of instances of model M2 in the observed en-
vironment. Since the environment is dynamic, the top hy-
pothesis will be changing continuously as planes move in
and out of radar range.

A PQS is a very general and flexible core that can be
applied to many different fields. The only elements that
change between different applications of a PQS are the for-
mat of the incoming observation stream(s) and the submit-
ted model(s). Compare this with a traditional DBMS; inven-
tory tracking systems, accounting, customer databases, etc.
are all different applications that, at the core, are all based
on the same DBMS. Likewise we have implemented vehicle
tracking systems, server farm monitoring applications, en-
terprise network security trackers, and covert timing chan-
nel detectors using the same PQS software core by simply
supplying a different observation stream and a different set
of models. Internally, a PQS has four major components
that are linked in the following order:

1. Incoming observation handling and sensor subscrip-
tion.

2. Multiple hypothesis generation.

3. Hypothesis evaluation by the models.

4. Selection, pruning, and publication.

To conclude, the major benefits of a PQS are its supe-
rior scalability and applicability. The application program-
mer simply connects the input event streams and then con-
centrates on writing process models. Models can be con-
structed as state machines (above), formal language de-
scriptions, Hidden Markov Models, kinematic descriptions,
or a set of rules. All these different model types are first
compiled down to the fundamental PQML (Process Query
Modeling Language) representation and then submitted to
the PQS. The PQS is then ready to track processes occur-
ring in a dynamic environment and continuously present the
best possible explanation of the observed events to the user.

2.2 Related Work

In recent years there has been significant research
into different implementations of self-awareness and self-
healing in server environments. The authors of [5] describe
the motivations and architectural concepts underlying much
of the work in this space.

Commercially-available server monitoring platforms,
such as NimSoft’s NimBUS [11] and JJ Labs’ Watch-
Tower [10], offer robust, lightweight sensing and report-
ing capabilities across large server farms. However, these
types of solutions are oriented towards massive data collec-
tion and performance reporting, and leave much of the final
analysis and decision-making to the administrator. Our ap-
proach automates this analysis by identifying failure states
probabilistically, based on behavioral models. The authors
of [13] and [6] also present scalable, lightweight architec-
tures for cluster monitoring.

The host-based Autonomic Defense System in [9] solves
a similar problem through model-based detection and re-
sponse. Their approach involves offline training of Markov
models to represent different attack scenarios. The archi-
tecture is different from ours, in that sensing, detection and
control components run on the individual hosts themselves.
We hope to use PQS to determine the viability of a joint
network and host-based paradigm built on a centralized ar-
chitecture for detecting and responding to server failures.

The SARA experiment in [14] compares local and or-
chestrated mechanisms for the autonomic detection and
mitigation of a distributed e-mail denial of service attack.
Like our system, theirs uses data from multiple observation
spaces to support coordinated detection of attacks.

Forrest et al. [7] have proposed methods of detecting
anomalous host behavior by monitoring system call se-
quences of selected Unix processes. This requires the of-
fline construction of normal pattern databases for each mon-
itored application. The online detection of anomalous traces
is a difficult task to scale, however, as every server can ex-
hibit different system call behaviors for the same applica-
tions. Runtime analysis of system calls can furthermore



curtail the monitored server’s performance.
Backdoors [2] is a system architecture for the remote de-

tection and repair of OS damage with non-intrusive probes.
This system imposes no overhead on OS resources, but re-
quires the installation of a dedicated hardware control chan-
nel and specialized OS extensions (kernel hooks) to monitor
performance metrics. Our platform uses passive, platform-
agnostic sensors that run in user-space to extract similar OS
state information. This sensing architecture is light-weight
and portable, as it does not require any significant host re-
instrumentation.

3 Architecture

In this section, we describe the fundamental compo-
nents of our approach to autonomic server monitoring, and
how they integrate with our current PQS implementation,
TRAFEN (TRacking And Fusion ENgine). The host-level
component is a user-space sensor, which monitors host be-
havior and publishes significant events to a TRAFEN en-
gine as observations. The TRAFEN engine fuses this in-
formation with observations from other sensors using cus-
tom process models, which hold the high-level evaluation
logic. Models correlate host-generated events with events
from other spaces, such as network sensors, that pertain
to network-level indicators of host failure. From the out-
put of these process models, administrators or higher-level
TRAFEN instances can make valuable conclusions about
the state of one or more nodes in the monitored network.

3.1 User-space Sensors

The purpose of the user-space sensor is to collect and
pre-process host-level state data and to generate sufficient,
meaningful events in order to enable host verification at
higher levels in the system. The principal design consid-
eration for these sensors is that they operate in a relatively
non-intrusive manner, and that they require minimal host
reinstrumentation upon deployment. Events are generated
on a reactive basis when short-term anomalies in any of the
monitored host metrics are detected. These events are sub-
sequently published to the TRAFEN system as observations
over a dedicated TCP socket connection. Observations are
treated as possible symptoms of larger-scale host or service
failures, or security compromises.

The user-space sensor, shown in Figure 3 comprises
two decoupled modules: a state extractor and an evalua-
tor. The state extractor samples a set of raw process-level
and system-level performance metrics at regular intervals.
The state extractor can be configured to monitor or exclude
from monitoring any subset of processes. This allows for
the reduction in the number of generated events, and sub-
sequently noise, by limiting evaluation to specific applica-
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Figure 3. The user-space sensor running on
monitored host.

tions. The state extractor’s performance may also be tuned
by adjusting its sampling rates. At present, this is the only
machine-specific configuration required by the sensors. The
state extractor acquires the following metrics:

For each monitored process:

• process ID (PID)

• process state

• process memory utilization in MB

• percent process CPU utilization

• process parent name

• process parent ID (PPID)

For the entire system:

• total system memory utilization in MB

• percent total system CPU utilization

• total number of processes

• total MB received over network interface

• total MB sent over network interface

The raw data is extracted from the /proc file system,
while other system-level properties, such as IP address and
time stamps are acquired through external calls to shell
commands. These indirect measures of host behavior pro-
vide a fairly platform-agnostic view of a system’s runtime



state and can be extracted non-invasively, without reinstru-
menting the kernel or application code. The evaluator con-
sumes this continuous stream of state samples, and gener-
ates an event when it detects something extraordinary across
them. The sensor provides for two basic event models:

• Routine, continuous events (e.g., system CPU usage
up 30%).

• Relatively infrequent, discrete events (e.g., httpd pro-
cess forks a shell process).

Both alert categories are highly valuable as potential
manifestations of system or service failure to the detectors
at the TRAFEN level, so we account for both in our process
models and sensor architecture.

A fundamental challenge to developing robust host sen-
sors for effective and lightweight anomaly monitoring is
that many instances will in practice generate excessive
amounts of redundant or insignificant events, possibly de-
grading host, network, and detector performance. It is often
difficult at the host level to distinguish normal or accept-
able variations in runtime variables from true anomalies.
Many host sensors address this by capturing characteriza-
tion baselines of each performance metric during an ini-
tial training phase. This can be a lengthy and burdensome
process, however, and we hope to minimize the degree of
machine-specific configuration. Extensive sensor training
can reduce the generation of seemingly irrelevant observ-
ables (e.g., system CPU utilization increase). However, we
do not want the evaluator to simply ignore these traces, as
they might be valuable in a higher-level context as symp-
toms.

To manage the evident tradeoffs between monitor run-
time performance, portability and detection accuracy, the
evaluator aggregates performance metrics over sampling
windows to effectively maintain smoothed, running aver-
ages. The sensor, in turn, listens for short-term deviations
in OS and target application behavior by comparing each
metric slope to threshold values. When a new sample ex-
ceeds the previous window average by this threshold, an
event is generated. Hence, the slope thresholds and sam-
pling window length control the sensitivity of the sensor.
This coarser-grained analysis reduces the overall frequency
of false alert generation and doesn’t require a priori deter-
mination of acceptable behavior ranges.

3.2 Event Format

When a user-space sensor detects an anomalous trace in
one of the monitored host metrics, it generates an event
to describe the perceived host state and publishes it to
TRAFEN. Each event is assembled as a TRAFEN obser-
vation - a structured, canonical format that only contains in-
formation that is relevant to higher-level entities. To enforce

this level of granularity, significant host events are generally
translated into higher-level semantics (e.g., System mem-
ory up 15% → SYS.MEM) . Observations are collections of
name-value pairs and adhere to a simple ontology, demon-
strated in the examples below.

HostObservation {
time: Thu Jan 06 13:34:05 EST 2005
type: SYS.PROCS.GROWTH
ip: 10.0.0.20
num_procs: 56

}

HostObservation {
time: Thu Jan 06 13:33:04 EST 2005
type: PROC.CPU
ip: 10.0.0.24
name: sftp-server
pid: 30039
state: S
parent_name: sshd
ppid: 30038

}

The observation’s type field is a generic descriptor for
the type of anomaly detected at the host. Observations are
divided into two semantic categories: continuous and dis-
crete. Continuous observations correspond to slope anoma-
lies, whereas discrete observations correspond to singu-
lar, categorical sensed events. Observations are subdivided
into process-level (PROC.*) and system-level (SYS.*). The
observation type hierarchy shown in Table 1 illustrates
the type and granularity of information that is fed into
TRAFEN.

3.3 Models

Leveraging the extensibility of the TRAFEN system, we
have developed a suite of novel process models to per-
form event correlation, scoring and problem determination.
TRAFEN models encapsulate all of the necessary logic for
evaluating hypothetical tracks of observations from moni-
tored hosts and network sensors. Since the TRAFEN infras-
tructure abstracts away the collection and mapping of host
observations to process models, the administrator can con-
centrate on developing and experimenting with a set of un-
derlying models by applying various state estimation tech-
niques. For the purpose of autonomic host monitoring, each
model is designed to track one of the following:

• Isolated host runtime performance.

• Correlated network and host activity.

• Aggregate network status.



Table 1. User-space sensor observation types
Continuous types
PROC.MEM Process memory utilization
PROC.CPU Process CPU utilization
SYS.NET.RX Incoming network traffic
SYS.NET.TX Outgoing network traffic
SYS.MEM System memory utilization
SYS.CPU System CPU utilization
Discrete types
PROC.SPAWN Spawning of a monitored process type (e.g., sh, httpd)
SYS.PROCS.GROWTH Growth in total number of processes
SYS.PROCS.HIERARCHY Suspicious process hierarchy (e.g., depth, breadth)

SYS.MEM,PROC.SPAWN}
{SYS.CPU,SYS.PROCS.GROWTH} {Network Recon}

Compromised

{PROC.MEM, PROC.CPU,

Nominal Questionable

Figure 4. An example state-machine pro-
cess model, M3, for detecting generic attack-
related server compromises through host and
network activity correlation.

The TRAFEN engine evaluates incoming observations
one at a time, and checks if they are related by some model-
specific measure. Correlated events (events that are likely
related) are gathered as tracks, which describe one possi-
ble host scenario. We have implemented several prototype
models that embody the problem behavior of monitored en-
tities with varying degrees of complexity and granularity.
These initial models serve to reduce the overall rate of false
positives in server failure detection.

We are currently working with process models that cover
the following general scenarios:

1. Network intrusion and host-level manifestations:

Models in this category analyze changes in host be-
havior after a network-level event relevant to that host
(IP) has occurred. The underlying rationale for this de-
sign pattern is that host sensors will often report "ex-
ceptional events" that aren’t actually alarming. Simi-
larly, network-based sensors frequently generate false
positives in response to innocuous network activity.
Hence, there is often detrimental noise at both host and
network levels. By tracking certain properties of re-

ported host-level events, however, models can interpret
finer-grained host activity and temporally correlate it
with pertinent network activity (by common IP). This
should subsequently reduce the rate of false-positives
and enable the system to arrive at more sensible hy-
potheses about the current state of a monitored host.

These models operate on two independent obser-
vation spaces, H and N, for the observable host
and network events, respectively. The observations
from each of these spaces at time t are denoted as
h1:t = (h1,h2, . . . ,ht) and n1:t = (n1,n2, . . . ,nt).

For each observation, arriving at time t, the model
computes p(st |h1:t ,n1:t), the conditional probability of
how likely the current event sequence of host and net-
work observations indicates a modeled attack or fail-
ure scenario, st , for a monitored host. At each time,
t, the TRAFEN engine feeds many different subsets
of the observation sequence (tracks) to each model for
evaluation. Over time, many tracks accumulate and
are scored according to the probability p(st |h1:t ,n1:t).
Tracks with lower scores are eventually pruned, and
those remaining continue on to the subsequent itera-
tion, where they may grow.

Figure 4 shows a simple state machine pro-
cess model, M3, with three generic server states:
Q3 = {Nominal,Questionable,Compromised}. It
treats variants such as short-term system CPU spikes
(SYS.CPU) and aggregate process count growth
(SYS.PROCS.GROWTH) as indicators of steady-state
server behavior. When one or more NIDS observations
with the same destination IP as the server arrives, it
transitions to the Questionable state, where it waits for
a specified timeout. If this is followed by the spawning
of a monitored process type, a jump in system mem-
ory, or a series of PROC.CPU or PROC.MEM obser-
vations, the Compromised state is entered. In this state,
the probability of compromise, p(st |h1:t ,n1:t), grows



for each qualified host observation reported within the
timeout.

2. Isolated host failure or performance degradation:

Models in this category perform local diagnoses of
host failures caused by system or service misconfig-
urations and application flaws. Such models do not
make use of global network context, but the TRAFEN
engine is still useful in making runtime assessments, as
it can provide administrators with a concise and con-
textual view of the status of their servers.

We can configure TRAFEN to simultaneously eval-
uate observation streams using multiple models to for-
mulate causal alternatives for each detected host fail-
ure or performance degradation. For instance, we could
submit the host-network activity correlator model, M3,
along with an isolated host degradation model, M4, to a
TRAFEN instance. For simplicity, define M4 as a state ma-
chine S4 = (Q4,Σ4,δ4), with equivalent states as M3, i.e.
Q3 ≡ Q4, and Σ4 = {ha,hb,hc,hd ,he,h f ,hg} ⊆ H. Let
Σ3 = {na,nb,ha,hb,hc,hd ,he,h f }, where {na,nb} ⊆ N.
Now suppose that TRAFEN receives the following se-
quence of host and network-level observations for an ob-
served host (i.e., all share the same destination IP):

e1:12 = heh f hghahgnahghghghghgnb

Based on the scores generated by the two models over
time, the following tracks would be returned as the combi-
nations that most likely indicate the occurrence of their cor-
responding failure scenarios (s3, s4) on the observed host:

M3 → heh f hahananb

M4 → heh f hghahghghghghghg

The two models treat different event subsequences as in-
dicators of s3 and s4, and grow their track likelihoods in-
dependently. Therefore, each model forms its own con-
clusions about the observation sequence. In this example,
M3 generates the likelihood p(s3|h1:t ,n1:t) = 0.55 and M4

the likelihood p(s4|h1:t) = 0.9. TRAFEN subsequently
concludes that this event sequence’s target host is certainly
"questionable", but that it is most likely facing some sort
of an isolated failure, perhaps a misconfiguration. The ob-
served network events (na,nb), are most likely not associ-
ated with an attack.

The resultant multi-model likelihoods can be compared
using a threshold, as in [8], to identify the failure and facil-
itate an autonomic response:

B <
p(s3|h1:t ,n1:t)

p(s4|h1:t)
< A

If the ratio falls below the threshold, B, then s4 is deemed
the fault scenario occurring in the observed environment.

Alternatively, if it is greater than the threshold, A, then s3

is deemed the fault scenario. If the ratio falls between A
and B, however, the system waits until more observations
are received. By adjusting A and B, we can control the sen-
sitivity of the response mechanism and enforce a minimum
confidence before taking any action.

4 Results

We have performed initial experiments of the system on
a test-bed production network of heterogenous servers and
workstations. Initial results have shown promise in our ap-
proach for detecting and qualifying server failures caused
by network intrusions. In this section, we present the results
from an experiment involving a prototype host-network ac-
tivity correlation model, M3, described in 3.3.

4.1 Experimental Setup

The experimental testbed is a notional DMZ that consists
of four Pentium III and IV servers, each running RedHat
Linux and Apache HTTP server 2.0.40 or 2.0.52. A fifth
machine on a separate network acts as an external attack
host, from which a manual denial of service (DoS) attack is
initiated. Each server is instrumented with a user-space sen-
sor, which runs continuously. In addition to aggregate sys-
tem state, the sensors are configured to monitor the httpd,
bash, and sh processes. The TRAFEN engine runs on a
local Sun Fire 210 server with dual 1GHz UltraSPARC III
processors and Solaris 9, and listens for observations from
the monitored hosts over a dedicated TCP socket. TRAFEN
also listens for observations from a mainstream network in-
trusion detection sensor (Snort), which monitors network
traffic on the DMZ. Hence, we have two independent ob-
servation spaces.

The TRAFEN engine reports its real-time conclusions
to a web-based user interface, which displays tracks of ob-
servations and associated scores. The scores (track likeli-
hoods) are a quantitative measure between 0.0 and 1.0 of
how likely a track of observations indicates an attack or
failure scenario described by a submitted process model.
Therefore, track scores are indirect, real-time measures of
individual host condition with respect to criteria defined
in the associated model. Each track score is also dis-
played qualitatively as a color-coded progress bar, which
transitions from green to yellow to red based on model-
specific score thresholds. Red typically represents a host
that has most likely been compromised, and requires imme-
diate attention from an administrator or an autonomic heal-
ing mechanism. By submitting multiple process models, we
can effectively monitor each host for multiple scenarios, as
demonstrated in 3.3. For this experiment, however, we load
only our prototype host-network correlation model, M3.



During experimentation, we record the evolution of the
track scores and corresponding progress bars for each mon-
itored host. The underlying objective is to gauge the sys-
tem’s ability to reduce false positives during a multi-stage
attack by correlating observations from both spaces and
computing subsequent track scores that reflect the relative
state of each host.

The simulated attack exploits a vulnerability in Apache
webserver versions 2.0.40 through 2.0.52, which allows at-
tackers to instigate a denial of service by flooding the server
with specially-crafted HTTP GET requests [3]. This causes
significant CPU and memory consumption, and can hang
the entire server. This results in a DoS, since the Apache
server never kills the connections while being attacked.
Hence, the attack could be thwarted with minimal disrup-
tion if the parent server process (httpd) were killed in time
and a backup web server brought online. The simulated at-
tack sequence is as follows:

1. Using nmap, attacker initiates an asymmetric stealth
port scan of the four DMZ servers from the external
attack host to identify potentially vulnerable targets;

2. Attacker waits for all scan results and notices that each
server is listening on port 8000;

3. Attacker waits an additional 30 seconds and launches
an Apache DoS attack against one server (host 3), lis-
tening on port 8000;

4. Attacker waits 30 seconds and terminates the attack.

4.2 Experimental Results

The sensors were run for a sufficient period of time
prior to data collection and online analysis to allow for any
startup transients to elapse. The time series in Figure 5
shows the evolution of the top track scores for each host
over the duration of the experiment, approximately 15 min-
utes. The y-axis is the likelihood of compromise, as deter-
mined for each server by the submitted process model, M3.
For this model, scores (likelihoods) below 0.5 are denoted
as low (green) severity, between 0.5 and 0.9 as medium (yel-
low), and above 0.9 as high (red).

This graph shows the classification and detection perfor-
mance of the model before, during, and after the simulated
manual DoS attack. Initially, the state estimate for each
server is Nominal. Soon after the scan initiation (280 sec-
onds into experiment), each server transitions to the Ques-
tionable state. When the DoS flood is launched against
host 3 at 396 seconds, its score suddenly jumps again,
quickly moving it to the Compromised state. The other three
servers continue normal operation, and remain in the Ques-
tionable state. At 415 seconds, just 19 seconds after the
start of the DoS flood, the victim’s likelihood has grown
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Figure 5. Progression of the estimated likeli-
hood of compromise for four servers moni-
tored by TRAFEN, using the prototype host-
network model, M3. host 3 is designated as
the victim server.

to 0.95. At this stage, an administrator or autonomic heal-
ing mechanism could concentrate on mitigating the com-
promise on host 3 by terminating the pertinent httpd pro-
cess(es), which are clearly identified in the host observa-
tions, as shown in 3.2.

Figure 6 shows the aggregate growth in host observations
reported to TRAFEN over the same time frame. This graph
illustrates how the four servers generate similar levels of
host observations until the actual DoS commences. Most
apparent is the sudden and significant jump in aggregate
host observations generated by the victim server (host 3)
shortly after attack initiation. Examination of this trend and
the graph in Figure 5 reveals the clear correlation between
simple, short-term anomalies in host behavior and suspi-
cious network reconnaissance activities. In this trial, the
user-space sensor provides the underlying indicators that
drive the victim server’s state estimate to Compromised, en-
abling rapid detection while the attack is still underway.

Table 2 provides a drill-down comparison of host-level
behavior during the experiment, as reported by each server’s
user-space sensor and the deployed Snort sensor. There are
several data points within this table that plainly differenti-
ate the victim, host 3, from the unaffected servers. Most
profound is the exclusive prevalence of PROC.MEM ob-
servations, which correspond to the acute growth in mem-
ory utilization of the overloaded Apache server (httpd) pro-
cesses in response to the HTTP request flood. Likewise,
the PROC.SPAWN observations correspond primarily to the
forking of child server processes for handling the incoming
requests. It is especially worth noting how the distribution



Table 2. Distribution of all host and network observation types reported to TRAFEN
Observation host 1 host 2 host 3(*) host 4
PROC.MEM 0 0 22 0
PROC.CPU 0 1 1 0
SYS.MEM 0 0 7 0
SYS.CPU 12 20 11 2

PROC.SPAWN 0 1 13 2
SYS.PROCS.GROWTH 1 2 4 3

Snort 3 2 3 4
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Figure 6. Host observations generated by
each monitored host’s user-space sensor and
reported to TRAFEN.

of Snort reconnaissance observations is relatively uniform
across the four servers. Therefore, despite each server be-
ing equally vulnerable to the same exploit, and experiencing
comparable attack precursors, only the victim host produces
traces of deviant service behavior, subsequently elevating it
to the Compromised state.

Figure 7 further demonstrates the system’s ability to pri-
oritize manual or autonomic responses to the attack. These
are screen shots of the front-end TRAFEN display, a real-
time dashboard for the track scores and severity levels of
each monitored host. The three screen shots were acquired
over the course of the experiment and convey to the end user
the same information as in Figure 5.

Overall, the results from this initial experiment demon-
strate how our non-intrusive user-space host sensors can,
with fairly minimal effort, be tuned to adequately detect
and report low-level abnormalities that are essential to high-
level intrusion detection.

(a) 210 seconds into experiment.

(b) 390 seconds into experiment, 110 seconds after scan start.

(c) 415 seconds into experiment, 19 seconds after attack start.

Figure 7. Front-end displayed host tracks and
severities.

5 Analysis and Future Work

We are presently working on the implementation and
testing of the existing models and sensors. A much larger-
scale experiment is planned, which will entail an evaluation
of the system’s detection performance and scalability when
deployed across dozens of virtual, heterogenous servers.
We are experimenting with a more extensive range of pro-
cess models that describe system behavior at different levels
of abstraction. The objective is to determine which types of
models perform best with minimal training or calibration.
This is also the case for the user-space sensor, which we
will continue to build on by adding additional monitored
performance metrics, such as disk I/O.



Additional work in progress:

• Integrate a feedback loop to administer self-healing
actions based on the broader enterprise awareness at-
tained through the existing system. This autonomic
healing mechanism will craft suitable responses to pro-
tect mission-critical services based on the conclusions
generated by the process models. This will comprise
a response module integrated into the TRAFEN plat-
form, and a host-based effector. The effectors will ex-
ecute TRAFEN response directives, such as the termi-
nation of compromised processes.

• Implement a level-2 aggregator model. Part of the au-
tonomic utility of this system is to dynamically fine-
tune the anomaly detection parameters, such as metric
thresholds, in order to enhance runtime performance
and reduce the occurrence of possible false positives
at higher levels in the system. This process model
will monitor entire groups of servers and track runtime
statistics of host observation frequencies to derive a
global baseline. This will improve the detection accu-
racy of individual system behavior models by helping
identify outliers amongst larger server populations.

6 Conclusions

In this paper, we have presented a promising new
methodology and supporting architecture to automate rapid
problem determination for multiple servers. By combin-
ing the scalability, robust data collection, model abstraction,
and automatic hypothesis generation capabilities of PQS,
we were able to use a fundamentally less complex and in-
trusive host sensor paradigm to rapidly detect a multi-stage
denial of service attack against a server network.

Our system reduces false positives by using process
models to probabilistically correlate host-level symptoms of
performance degradation with network context. This was
demonstrated in an experiment involving a host and net-
work activity correlator model. Through temporal and spa-
tial correlation, the submitted model determined with high
confidence that the attacked server had been compromised,
disambiguating it from the unaffected servers.

Our approach shows promise in its ability to adequately
reduce false positives in a heterogenous server network. It
is an important step forward towards more automated server
and service awareness in large networks. However, more
work remains to be done to assess the scalability of the sys-
tem’s runtime and detection performance in much larger en-
vironments.
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